
(a) (\downarrow) $\quad T \cos 60^{\circ}=m g \Rightarrow T=2 m g * \quad B 1$
(b) $\quad(\leftrightarrow) T \sin 60^{\circ}=m r \omega^{2}$
[Omission of m is M0]
Attempt at $r=L \sin 60^{\circ} \quad$ M1
$\left(T \sin 60^{\circ}=m L \sin 60^{\circ} \omega^{2}\right)$

$$
\begin{equation*}
\omega=\sqrt{\frac{2 \mathrm{~g}}{L}} \tag{A1}
\end{equation*}
$$

(c) Applying Hooke's Law: $2 m \mathrm{~g}=\frac{\lambda}{\left(\frac{3}{5} L\right)}\left(L-\frac{2}{5} L\right) ; \quad \lambda=3 m \mathrm{~g} \quad$ M1;A1 (2) [L in denominator is M0]
2.
(a) Integration of $-4 \mathrm{e}^{-2 t}$ w.r.t. t to give $v=2 \mathrm{e}^{-2 t} \quad(+\mathrm{c})$

B1
Using initial conditions to find c (-1) or $v-1=[f(t)]_{0}^{t}$ M1

$$
\begin{equation*}
v=2 \mathrm{e}^{-2 t}-1 \mathrm{~ms}^{-1} \tag{3}
\end{equation*}
$$

A1
(b) Integrating v w.r.t $t ; \quad x=-\mathrm{e}^{-2 t}-t(+c)$ M1;A1 $\sqrt{ }$

Using $t=0, x=0$ and finding value for $c(c=1)$ M1

Finding t when $v=0 ; \quad t=1 / 2 \ln 2$ or equiv., 0.347
M1;A1 $\sqrt{ }$
[both f.t. marks dependent on v of form $a \mathrm{e}^{-2 t} \pm b$]

$$
x=1 / 2(1-\ln 2) \mathrm{m} \text { or } 0.153 \mathrm{~m}(\mathrm{awrt}) \quad \mathrm{A} 1
$$

(6)
[For A1, exact form must be two termed answer]
3. (a) $F=\frac{k}{x^{2}} \quad$ [k may be seen as $G m_{1} m_{2}$, for example]

Equating F to $m g$ at $\boldsymbol{x}=\boldsymbol{R}, \quad\left[m g=\frac{k}{R^{2}}\right]$
Convincing completion $\left[k=m g R^{2}\right]$ to give $F=\frac{m g R^{2}}{x^{2}} \quad *$
[Note: r may be used instead of x throughout, then $r \rightarrow x$ at end.]
(b) Equation of motion: $(m) a=(-) \frac{(m) g R^{2}}{x^{2}} ; \quad(m) v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{(m) g R^{2}}{x^{2}}$

M1;M1
Integrating: $\quad 1 / 2 v^{2}=\frac{g R^{2}}{x} \quad(+\mathrm{c})$ or equivalent
[S.C: Allow A1 $\sqrt{ }$ if A0 earlier due to " + " only]
Use of $v^{2}=\frac{3 g R}{2}, x=R$ to find $c[c=-1 / 4 \mathrm{~g} R]$ or use in def. int.
[Using $x=0$ is M0]

$$
\left[v^{2}=\frac{2 g R^{2}}{x}-\frac{g R}{2}\right]
$$

Substituting $x=3 R$ and finding $V ; \quad V=\sqrt{\frac{g R}{6}}$
[Using $x=2 R$ is M0]
Alternative in (b)
Work/energy $(-) \int_{R}^{a} \frac{m g R^{2}}{x^{2}} \mathrm{~d} x ;=1 / 2 m v^{2}-1 / 2 m u^{2}$
Integrating: $\left[\frac{m g R^{2}}{x}-\frac{m g R^{2}}{R}\right]=1 / 2 m v^{2}-1 / 2 m \frac{3 g R}{2}$
Final 2 marks as scheme
[Conservation of energy scores 0]
4.

(a) Length of string $=\frac{10}{3} a$

$$
\begin{aligned}
\mathrm{EPE} & =\frac{\frac{1}{2} m g}{2 a}(L-a)^{2} \\
& =\frac{49}{36} m g a
\end{aligned}
$$

(b) Energy equation: $1 / 2 m v^{2}+\frac{\frac{1}{2} m g}{2 a} a^{2}=\left(\frac{49}{36} m g a\right)_{\mathrm{C}}$

$$
v=\frac{2}{3} \sqrt{5 g a} \text { or equivalent }
$$

(c) When string at angle θ to horizontal, length of string $=\frac{2 a}{\sin \theta}$
\Rightarrow Vert. Comp. of $T, T_{\mathrm{V},}=T \sin \theta=\frac{m g}{2 a}\left(\frac{2 a}{\sin \theta}-a\right) \sin \theta$

$$
=\frac{m g}{2}(2-\sin \theta)
$$

(1) $R+T_{\mathrm{V}}=m g$ and find $\mathrm{R}=$

$$
\begin{aligned}
& \mathrm{R}=m g-\frac{m g}{2}(2-\sin \theta)=\frac{m g}{2} \sin \theta \\
\Rightarrow & R>0 \text { (as } \sin \theta>0 \text {), so stays on table }
\end{aligned}
$$

B1
[Alternative final 3 marks: As θ increases so T_{V} decreases M1 Initial T_{V} (string at β to hor.) $=\frac{7}{10} m g \quad \mathrm{~A} 1$ $\Rightarrow T_{\mathrm{V}} \leq \frac{7}{10} m g<m g$, so stays on table A1]
5.
(a)

Applying Hooke's Law correctly : e.g. $T=\frac{48 x}{0.6}$
Equation of motion: (-) $T=0.2 \ddot{x}$
Correct equation of motion: e.g. $-\frac{48 x}{0.6}=0.2 \ddot{x}$

Writing in form $\ddot{x}=-\omega^{2} x$, and stating motion is SHM
Period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{20}=\frac{\pi}{10} \quad * \quad$ (no incorrect working seen)
[If measure x from B or A, final 2 marks only available if equation of motion is reduced to $\left.\ddot{X}=-\omega^{2} X\right]$
(b) $\max v=a w$ with values substituted; $=0.3 \times 20=6 \mathrm{~ms}^{-1}$
(c) Using $x=0.3 \cos 20 t$ or $x=0.3 \sin 20 T$

Using $x=0.15$ to give either $\cos 20 t=1 / 2$ or $\sin 20 T=1 / 2$

Either $t=\frac{\pi}{60}, \frac{5 \pi}{60} \quad$ or $\quad T=\frac{\pi}{120}$

Complete method for time:

$$
t_{2}-t_{1}, \quad \text { or } \quad \frac{\pi}{10}-2 t_{1}, \quad \text { or } 2\left(\frac{\pi}{40}+T\right)
$$

Time $=\frac{\pi}{15} \mathrm{~s}$ (must be in terms of π)

6.
 (a)

Cylinder
Hemisphere S

Masses	$(\rho) \pi(2 a)^{2}\left(\frac{3}{2} a\right)$	$(\rho) \frac{2}{3} \pi a^{3}$	$(\rho)\left(\frac{16}{3} \pi a^{3}\right)$	M1A1
	$\left[6 \pi a^{3}\right][18]$	$[2]$	$[16]$	

Distance of	$1 / 8 a$	$\frac{3}{8} a$	\bar{X}	B1B1

CM from O

$$
\text { Moments equation: } \begin{gathered}
6 \pi a^{3}(3 / 4 a)-\frac{2}{3} \pi a^{3}\left(\frac{3}{8} a\right)=\frac{16}{3} \pi a^{3} \bar{x} \\
\bar{x}=\frac{51}{64} a
\end{gathered}
$$

G above " A " seen or implied
M1
or $m g \sin \alpha(G X)=m g \cos \alpha(A X)$
$\tan \alpha=\frac{A X}{X G}=\frac{2 a}{\frac{3}{2} a-\bar{X}}$

$$
\left[G X=\frac{3}{2} a-\frac{51}{64} a=\frac{45}{64} a, \tan \alpha=\frac{128}{45}\right] \quad \alpha=70.6^{\circ}
$$

(c) Finding F and $R: R=m g \cos \beta, F=m g \sin \beta$

Using $F=\mu R$ and finding $\tan \beta[=0.8]$ M1

$$
\begin{equation*}
\beta=38.7^{\circ} \tag{3}
\end{equation*}
$$

A1
7. (a) Energy: $1 / 2 m v^{2}-1 / 2 m u^{2}=m g a \sin \theta$

$$
v^{2}=\frac{3}{2} g a+2 g a \sin \theta
$$

(b) Radial equation: $T-m g \sin \theta=m \frac{v^{2}}{a}$

$$
T=\frac{3 m g}{2}(1+2 \sin \theta) \text { any form }
$$

(c) Setting $T=0$ and solving trig. equation; $(\sin \theta=-1 / 2) \Rightarrow \theta=210^{\circ} *$
(d) Setting $\boldsymbol{v}=\mathbf{0}$ in (a) and solving for θ

M1;A1(2)
M1

$$
\sin \theta=-3 / 4 \text { so not complete circle }
$$

A1
OR Substituting $\theta=270^{\circ}$ in (a); $v^{2}<0$ so not possible to complete
(e) No change in $\mathrm{PE} \Rightarrow$ no change in KE (Cof E) so $v=u$
(f) When string becomes slack, $V^{2}=1 / 2 \mathrm{~g} a[\sin \theta=-1 / 2$ in (a)]

Using fact that horizontal component of velocity is unchanged
M1

$$
\begin{aligned}
\sqrt{\frac{g a}{2}} \cos 60^{\circ} & =\sqrt{\frac{3 g a}{2}} \cos \phi \\
\cos \phi & =\sqrt{\frac{1}{12}} \Rightarrow \phi=73.2^{\circ}
\end{aligned}
$$

